Did you know CO2 is naturally higher in the winter? During the spring and...

NASA Climate Change 2 years ago

Did you know CO2 is naturally higher in the winter? During the spring and summer, plants use CO2 from the atmosphere to grow. Over the winter, plants decompose and release CO2 back to the atmosphere. But from year to year, CO2 continues to increase. The overall upward trend is due to increasing carbon emissions, primarily from burning fossil fuels. So the annual cycle is from plants while the long-term trend is caused by human activities. Video Description: A line graph on a white background showing the amount of carbon dioxide in the atmosphere every month since 2013. The graph is titled, How does CO2 change throughout the seasons? The line showing the amount of CO2 over time is sawtooth-shaped, with a peak each spring and a valley each autumn. In addition to that annual wiggle, the overall amount of CO2 increases every year. So the line looks like a jagged, upward slope. Text on the graph walks through the explanation: The upward trend in carbon dioxide in the atmosphere is caused by carbon emissions. The primary cause of human carbon emissions is burning fossil fuels. But what causes the sawtooth, up and down pattern? Plants! During the growing season, plants draw in CO2 to fuel their growth. In the autumn, CO2 reaches its lowest point for the year. As plant growth stops or slows down, the whole process reverses itself. Plant matter decomposes and releases CO2 back to the atmosphere. CO2 increases throughout the winter months. Hitting its annual peak in springtime. Then the cycle repeats, as plants start growing again and using up CO2. So while nature causes the sawtooth pattern of ups and downs from year to year, humans are causing the upward climb of the trend line over the years. Thus, the data illustrate both natural factors and human additions of CO2. #NASA #Earthscience #ClimateChange #Carbon

layersDaily Sustainability Digest

Published about 5 hours ago



Ocean governance reforms now carry direct consequences for sustainable construction and environmental sustainability in construction. The UN High Seas Treaty and proposed protections for the Antarctic Peninsula introduce stricter environmental impact assessments for offshore and coastal developments, signalling an era of detailed whole life carbon assessment in marine-related infrastructure. Developers of subsea cables, interconnectors, and CO₂ pipelines will contend with extended consenting processes and biodiversity restrictions that influence material selection, eco-friendly construction practices, and low carbon design decisions across multiple jurisdictions. The evolution of marine spatial planning aligns with circular economy in construction principles, recognising supply-chain carbon exposure as both a design and compliance issue.

Trade policy disruption poses further challenges to sustainable building design. Prospective tariffs on low-carbon materials—such as green building materials, steel, engineered timber, and heat-pump components—threaten project timelines and budgets. Anticipated responses include regional procurement strategies, adoption of sustainable material specification, and more rigorous evaluation of embodied carbon in materials and life cycle cost performance. Demands for verifiable environmental product declarations (EPDs) and building lifecycle performance metrics are expected to rise as clients seek transparency for carbon neutral construction targets.

Climate volatility is reshaping low-impact construction strategies, particularly in flood-prone and mountainous regions. Designers must adopt adaptive lifecycle assessment frameworks that prioritise redundancy, attenuation, and slope stability. These approaches support net zero whole life carbon goals and reduce the carbon footprint of construction, reinforcing resilience and resource efficiency in construction.

The policy debate on decarbonisation is shifting toward measurable outcomes. Governments are preparing performance-linked procurement and finance mechanisms that embed whole life carbon benchmarks into material supply chains. The accelerating move toward net zero carbon buildings, green construction, and BREEAM V7 standards signals the transition from intent to implementation. Markets for low embodied carbon materials and circular construction strategies are scaling at pace, defining a new baseline for sustainable building practices and comprehensive whole life carbon accountability across the global built environment.

Show More

camera_altFeatured Instagram Posts:

Get your opinion heard:

Whole Life Carbon is a platform for the entire construction industry—both in the UK and internationally. We track the latest publications, debates, and events related to whole life guidance and sustainability. If you have any enquiries or opinions to share, please do get in touch.

eco

WLC Assistant

Ask me about sustainability

Hi! I'm your Whole Life Carbon assistant. I can help you learn about sustainability, carbon assessment, and navigate our resources. How can I help you today?